If you have turned on a light, entered a building, driven on a road, made a phone call, used a computer, or visited a doctor, then mining is an important part of your life.

Dedicated to our people, the communities in which we live and the environment that nurtures us all, *mining provides the resources for a better future.*
America’s Mining at a Glance

- Every American uses an average of 40,000 pounds of newly mined materials every year, including three tons of coal.

- 536,000 Number of direct mining industry jobs.
- 1,000,000 Number of indirect jobs generated by the mining industry.
- $80,000+ Average annual salary for a miner, well above the U.S. average wage of $53,313.
- $99B Annual U.S. revenues generated through mining.
Resources for a Better Future

Technologies made possible through and employed by mining stimulate innovation, providing the necessary resources for a better life and a better future.

94 million
Number of ounces of silver used in solar energy in 2017.

90%
Amount today’s power plants have reduced pollutants (SO₂, NOx, particulates and mercury) compared with the plants they replace from the 1970s, while coal use has increased.

66
Number of minerals used in the average computer.

183 lbs.
Amount of copper in battery electric vehicles, nearly 4x as much as a gasoline-powered car.

0.000002
Thickness of gold film applied to astronauts’ visors to reduce glare from intense sunlight. Gold is also used in hundreds of ways in space vehicles.

35%
CO₂ emissions reductions achieved through high efficiency, low emissions coal plants.

20
The number of new, lower cost, more efficient and environmentally compatible technologies for electric utilities, steel mills, cement plants and other industrial projects made possible through clean coal technology research.
Resources That Power Our Lives

Electricity should be accessible and affordable to all.

<table>
<thead>
<tr>
<th>Percentage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>30%</td>
<td>Portion of U.S. electricity that comes from coal.</td>
</tr>
<tr>
<td>20%</td>
<td>Portion of electricity generated from nuclear energy powered by uranium.</td>
</tr>
<tr>
<td>29</td>
<td>Number of minerals it takes to deliver electricity to our homes and businesses.</td>
</tr>
<tr>
<td>87%</td>
<td>Portion of U.S. fossil energy reserves (coal, natural gas and oil) that comes from coal on a BTU basis.</td>
</tr>
<tr>
<td>$93B</td>
<td>Amount Americans save in electricity costs annually through a diverse power grid anchored by coal.</td>
</tr>
<tr>
<td>24%</td>
<td>Portion of total world coal reserves held by the U.S.—the most of any country.</td>
</tr>
</tbody>
</table>

Resource diversification—powered by a mix of domestic coal, natural gas, nuclear power, oil and renewable sources—ensures that U.S. households and businesses can minimize market disruptions and reduce reliance on foreign energy sources.

New technologies, such as advanced coal-fired power generation and carbon capture and storage, will give Americans energy choices that are aligned with environmental and climate objectives without having to sacrifice reliability or affordability.
Mining provides essential power and materials for nearly every industry and consumer product, and supplies low-cost, reliable fuel for homes and businesses across the country.

The mining industry is supported by hundreds of thousands of hardworking Americans. They are deeply proud of the contributions they make to our country each day, fueling America and supplying the materials that make our high quality of life possible and America a global leader in innovation.

Resources for Our Economy

- **118,000** Direct coal mining jobs
- **418,000** Direct minerals mining jobs
- **300,000** Indirect coal mining jobs
- **700,000** Indirect minerals mining jobs
- **$17,000,000,000** Total federal, state and local taxes attributable to mining
What resources play a key role in your state?

coal, copper, gold, iron ore, molybdenum, zinc, uranium, lead, rare earths, platinum-group metals, salt, gypsum, silver, nickel, phosphate, boron, limestone, kyanite, beryllium, cobalt, bentonite, bromine, cement, common clays, diatomite, feldspar, gemstones, greensand marl, helium, magnesium metal, palladium, peat, potash, sand and gravel, soda ash, stone, tripoli, wollastonite, zirconium
Major mined products from your state

Alabama: Coal, cement, stone, lime, sand and gravel, kyanite, common clays

Alaska: Coal, zinc, gold, lead, silver, sand and gravel

Arizona: Coal, copper, molybdenum, sand and gravel, cement, stone, silver

Arkansas: Coal, bromine, molybdenum, sand, cement, gypsum, sand and gravel, lime

California: Sand and gravel, cement, boron, stone, gold

Colorado: Coal, uranium, molybdenum, sand and gravel, cement, gold, stone

Connecticut: Stone, sand and gravel, common clays, gemstones

Delaware: Stone, sand and gravel, magnesite, gemstones

Florida: Phosphate rock, stone, cement, sand, gravel, zeolite

Georgia: Clay, kyanite, stone, cement, sand and gravel

Hawaii: Stone, sand and gravel, gemstones

Idaho: Phosphate rock, sand and gravel, silver, lead, stone

Illinois: Coal, sand and gravel, stone, cement, tripoli

Indiana: Coal, stone, cement, lime, sand and gravel

Iowa: Stone, cement, gypsum, sand and gravel, lime

Kansas: Coal, helium, cement, salt, stone, sand and gravel, gypsum

Kentucky: Coal, stone, lime, cement, sand and gravel

Louisiana: Coal, salt, stone, sand and gravel, common clays

Maine: Sand and gravel, cement, stone

Maryland: Coal, cement, stone, sand and gravel

Massachusetts: Stone, sand and gravel, lime, common clays

Michigan: Iron ore, coal, copper, nickel, cobalt, concentrates, iron ore, sand and gravel, lime

Minnesota: Iron ore, coal, cement, lime, sand and gravel, stone, lead, sand and gravel

Mississippi: Coal, sand and gravel, cement, stone, (Holter’s coal, bartonite)

Missouri: Coal, cement, stone, lead, lime, sand and gravel

Montana: Coal, palladium, molybdenum, copper, platinum, gold

Nebraska: Cement, sand and gravel, stone, lime, dolomite

Nevada: Gold, copper, silver, sand and gravel, stone, gypsum

New Hampshire: Sand and gravel, stone, gemstones

New Jersey: Stone, sand and gravel, lime, cement, greensand marl, peat

New Mexico: Coal, copper, gold, sand and gravel, cement, dolomite, sand, molybdenum

New York: Coal, cement, lime, sand and gravel, salt, common clays

North Carolina: Stone, phosphorous rock, sand and gravel, fuller’s earth, ball bentonite, clay, cement

North Dakota: Coal, sand and gravel, stone, lime, common clays

Ohio: Coal, stone, sand and gravel, lime, cement

Oregon: Coal, cement, lime, sand and gravel, common clays

Pennsylvania: Coal, stone, cement, lime, sand and gravel, greensand marl, peat

Rhode Island: Sand and gravel, stone, gemstones

South Carolina: Cement, stone, sand and gravel

South Dakota: Coal, cement, sand and gravel, stone, lime

Tennessee: Sand, cement, zinc, cement, sand and gravel, salt, line

Texas: Coal, cement, gypsum, sand and gravel, cement, salt, lime

Utah: Uranium, molybdenum, copper, magnesium, radium, potash, salt, beryllium

Vermont: Stone, sand and gravel, lime, common clays

Virginia: Coal, stone, cement, lime, sand and gravel, anorthosite concentrates

Washington: Sand and gravel, cement, stone, lime, sand and gravel, iron ore, diatomaceous earth

West Virginia: Coal, stone, cement, lime, sand and gravel, stone, lime

Wisconsin: Sand and gravel, stone, lime

Wyoming: Coal, soda ash, bentonite, clays, helium, uranium, sand and gravel, cement
Resources for America’s Infrastructure

America’s miners play an indispensable role in powering and building our nation.

From foundations to roofs, power plants to wind farms, roads and bridges to communications grids and data storage centers—America’s infrastructure projects begin with mining.

Roads, railways, appliances, buildings, stadiums, bridges, airports and other structures are supported by steel—a material dependent on mining. Even structures using concrete employ steel for reinforcement. And copper’s flexibility, conformity, thermal and electric conductivity, and resistance to corrosion make it an ideal industrial metal.

<table>
<thead>
<tr>
<th>Percentage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>98%</td>
<td>Portion of the iron ore mined in the world that is used to make steel, the foundation of the world’s tallest buildings.</td>
</tr>
<tr>
<td>43%</td>
<td>Portion of U.S. copper demand that goes to the construction industry.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 billion</td>
<td>Tons of steel used in the U.S. National Highway System.</td>
</tr>
<tr>
<td>31 tons</td>
<td>Copper contained in the Statue of Liberty.</td>
</tr>
<tr>
<td>57,000 tons</td>
<td>Steel contained in the Empire State Building, which also includes 730 tons of aluminum and stainless steel.</td>
</tr>
<tr>
<td>2,080 lbs.</td>
<td>Liberty Bell weight, comprised of 70% copper, 25% tin, in addition to lead, zinc, arsenic, gold and silver.</td>
</tr>
<tr>
<td>71%</td>
<td>Percentage of the world’s steel produced using coal.</td>
</tr>
</tbody>
</table>
Metals and minerals are essential elements for safeguarding our nation. Resources for Our National Security

Our Armed Forces rely on domestic metals and minerals for sophisticated weapons systems and safe transport of our troops. And our abundant supplies of metals and minerals minimize our reliance on foreign countries for these vital resources.

Despite being home to one of the world’s leading minerals reserves, cumbersome permitting processes contribute to the U.S. remaining import-dependent for many key minerals.

750,000
Tons of minerals that are used by the U.S. Department of Defense each year in technologies that protect our troops.

$5 billion
Value of minerals the U.S. imports from foreign countries, despite being home to reserves estimated at $6.2 trillion.

6.6 pounds
Amount by which lithium-ion batteries can lighten a soldier’s pack, while providing three times the charge of regular batteries.

48
Number of key mineral resources on which the U.S. remains 50 percent or more import-reliant, subjecting our supply chains to geopolitical instability and supply disruption.
Ensuring the safety and health of our colleagues is a core value of the mining industry.

The goal? Zero fatalities and injuries. To achieve our shared goal, we go beyond what is required by regulations.

To accelerate the pace of mine safety improvement, the U.S. mining industry has taken voluntary steps to implement best practices that encourage a culture of safety.

By identifying and eliminating potential hazards, and deploying state-of-the-art technology, the National Mining Association, its members and respected industry safety and health professionals have developed CORESafety®, an award-winning safety framework that is bringing more miners home safely after every shift, giving mining a lower nonfatal injury and illness record than manufacturing, construction or private industry.

2016
Safest year in U.S. mining history.

54%
Portion by which injuries in U.S. mines have been reduced over the last 15 years.

55%
Portion by which fatalities in U.S. mines have been reduced over the last 15 years.

Natural resources are at the heart of mining—environmental stewardship is imperative.

Today’s mining projects begin with extensive environmental and engineering studies, public involvement in major decision-making, and compliance with scores of state and federal laws and regulations governing every facet of the environment, from wildlife habitat protection to water quality monitoring. They end with land reclamation that transforms sites for recreation, wildlife enhancement and other local community needs.

Building on the extraordinary environmental progress made in recent decades, the industry is committed to advancing technologies that make the use of our resources cleaner and more efficient. Today’s technologies are making combustion of coal more efficient, with reduced emissions. And ongoing advancements in high efficiency, low emission (HELE) coal technologies and carbon capture and storage (CCS) hold promise for the future.

90%
Portion by which today’s new coal-fueled power plants have reduced emissions (SO2, NOx, particulates and mercury).

3 million
Acres of mined land that have been restored by U.S. mining companies.

$10+billion
Amount the U.S. mining industry has paid to reclaim mines that were abandoned prior to laws requiring reclamation.
Speaking of Mining: Key Industry Terms

Alloy: A substance with metallic qualities that is composed of two or more chemical elements, of which at least one is an elemental metal.

Anthracite: See “ranks of coal.”

Auger mining: Form of underground mining that uses an auger (rotary drill) to penetrate, break and transport drilled material onto a waiting conveyor belt. Usually employed to recover remaining material in deep overburden areas that cannot be reached economically by further contour or area mining.

Base metals: Any of the non-precious metals. Copper, lead and zinc are usually considered the primary base metals, but tin, aluminum and magnesium are also among those important to modern society.

Bioleaching: Addition of naturally occurring bacteria to extract or remove a soluble substance from ore.

Bituminous coal: See “ranks of coal.”

Bond: A prerequisite for obtaining a mining permit; companies must post a reclamation bond to ensure sufficient funds to restore a site in the event a company fails to complete the reclamation plan approved in the permit.

Btu: British thermal unit. This is a measure of the energy required to raise the temperature of one pound of water one degree Fahrenheit. On average, coal contains about 20 million Btu per ton.

Bullion: Mixture of gold and silver in cast bars. Also called dore.

Captive mine: A mine whose resource is used largely or totally by its owners or a subsidiary operation.

Clean coal technologies: A number of innovative technologies designed to use coal in a more efficient and cost-effective manner while enhancing environmental protection. These include processes applied before, during and after combustion, and involve those which change coal into a gas or liquid.

Coal seam: A bed or stratum of coal. Usually applies to a large deposit.

Coke: A hard, dry carbon substance produced by heating coal to a very high temperature in the absence of air. Coke is used in the manufacture of iron and steel.

Concentrate: The result of separating ore or metal from its containing rock or earth.

Continuous miner / mining: A mining machine and technique that removes coal from the face and loads it onto cars or conveyors without the use of cutting machines, drills or explosives and without interrupting the loading process. Can be highly automated and operated by remote control.

Conventional mining: A deep mining method that includes inserting explosives in a seam, blasting the seam and removing the material onto a conveyor or shuttle car. Accounts for about 9 percent of total underground coal production.

Demonstrated reserves: Deposits that are potentially minable on an economic basis with existing technology.

Dragline: A large excavation machine used in the surface mining process to remove overburden (see “overburden”). The dragline has a large bucket suspended from the end of a huge boom (275 feet long or larger) that is capable of scooping up vast amounts of overburden as it is dragged across the excavation area. The dragline, which can “walk” on huge pontoon-like “feet,” is one of the largest land-based machines in the world.

Drift mine: A mine entered directly through a horizontal opening drilled into the side of a hill or mountain. This mining method is used in hilly or mountainous areas.

Electrostatic precipitator: An electrical device used in removing particles (see “fly ash”) from combustion gases prior to release from a power plant’s stack.

Excavator: A large number of power-operated digging and loading machines, used increasingly in open-pit mining and quarrying.

Face: The exposed area of a coalbed from which coal is extracted.

Flotation: Separating ore from waste materials by floating away the materials of lower specific gravity, while the heavier materials sink.

Fluidized-bed combustion: Process to remove sulfur from coal combustion and limit the formation of nitrogen oxides (see “clean coal technologies”). The process involves suspending crushed coal and limestone in the bottom of a boiler by an upward stream of hot air. While the coal is burned in this liquid-like mixture, sulfur from combustion gases combines with the limestone to form a solid compound recovered with the ash.

Fly ash: Particles of ash entrained in gases resulting from the combustion of fuel. At coal-fired power plants, fly ash is captured by special equipment, usually either electrostatic precipitators or baghouses. Fly ash and other forms of coal ash are useful by-products—about 25 million tons are used each year in major concrete projects, such as highway construction.

Fossil fuel: Fuel such as coal, crude oil or natural gas, formed from the fossil remains of organic material.

Gasification: Any of various processes by which coal is turned into low, medium or high-Btu gas.

General Mining Law: The primary statute that governs the right to mine locatable minerals on unappropriated public domain lands. Though enacted in 1872, it has been amended many times.

Hardrock minerals: Locatable minerals that are neither leasable minerals (coal, oil, phosphate, etc.) nor saleable mineral materials (sand and gravel, etc.). Hardrock minerals include copper, lead, zinc, magnesium, nickel, tungsten, gold, silver, bontonite, barite, feldspar, fluorspar and uranium.

Highwall: Unexcavated face of exposed overburden and coal in a surface mine or in a face or bank on the uphill side of a contour mine excavation.

In situ gasification: The gasification of underground coal deposits through partial combustion.

Leaching: The action of percolating liquid in order to remove the soluble parts. Ex. Cyanide leaching of gold is a process in which a weak cyanide solution is percolated through low-grade ore...
heaped on an impermeable liner. Gold is then extracted from the liquid in a closed-loop system.

Lignite: See “ranks of coal.”

Liquefaction: The process of converting coal into a synthetic liquid fuel, similar in nature to crude oil and/or refined products, such as gasoline.

Locatable minerals: Those minerals—primarily metallic—that can be claimed and mined on public lands under the General Mining Law of 1872; these do not include coal, oil, phosphate sodium, sulfur, or sand and gravel.

Longwall miner / mining: A deep mining machine and technique that uses a steel plow or rotating drum, which is pulled mechanically back-and-forth across a long face of coal to loosen it and collect the product on a conveyor for removal from the mine.

Metallic minerals: Minerals with a high specific gravity and metallic luster, such as titanium, rutile, tungsten, uranium, tin, lead and iron. In general, metallic minerals are good conductors of heat and electricity.

Metallurgical coal: Various grades of coal suitable for carbonization to make coke for steel manufacture.

Minerals: Scientifically formed inorganic solids (elements or chemical compounds) with a limited range in chemical composition and with orderly internal atomic arrangements that determine crystalline structure and physical properties. Legal: organic or inorganic substances occurring naturally, with characteristics and economic uses that bring them within the purview of mineral laws; substances that may be obtained under the applicable laws from public lands by purchase, lease or claim.

Mining claim: That portion of the public mineral lands that a person may claim for mining purposes in accordance with the General Mining Law of 1872, as amended. There are four types of mining claims: lode, placer, millsites and tunnel sites. Only tunnel sites may not be patented under current law.

Mountaintop mining: A method of surface mining practiced in the Appalachian coal fields of the eastern United States. Mountaintop mining allows the mine operator to completely remove layers of dirt and rock covering a coal seam, making the entire deposit economical for extraction. Valley fill—the depositing of rock and dirt from the surface mine into adjacent valleys—is a practice that is not unique to the mining industry; hundreds of valley fills were constructed throughout the country during the building of the Interstate Highway System.

Non-metallic minerals: Minerals (carbon, diamond, coals, bitumen, asphalt, boron, sulfur, rock salt, etc.) that lack the properties of the metallic minerals.

Non-renewable resources: Resources that are not replaced or regenerated naturally within a reasonable period of time, such as fossil fuels or minerals.

Open pit: A mine or excavation open to the surface. Refers primarily to mines of metal ores; distinguished from coal surface mines.

Ore: Rock that contains important minerals, including metals.

Outcrop: Coal that appears at or near the surface.

Overburden: Layers of earth and rock covering a coal seam or mineral deposit.

Patent: A government deed; a document that conveys legal title to public lands to the patentee.

Placer deposit: An alluvial marine or glacial deposit resulting from the crumbling and erosion of solid rocks and often containing valuable minerals.

Portal: Entrance to a mine.

Preparation plant: A facility, usually located on a mine site, which crushes, sizes and washes material prior to shipment.

Ranks of coal: The classification of coal by degree of hardness, moisture and heat content. The major ranks, from lowest to highest quality, are lignite, subbituminous, bituminous and anthracite.

Reclamation: The restoration of land and environmental values to a mining site after mining occurs.

Recoverable reserves: Portion of reserves that can be economically and physically mined using current techniques after allowing for normal mining losses.

Reserves: Known identified resources from which a usable commodity can be technologically, economically and legally extracted using current mining techniques.

Rock dusting: The process of coating tunnels in deep mines with powdered limestone to dilute potentially unhealthy or dangerous concentrations of dust and minimize fire hazards.

Roof bolting: A method of supporting the ceilings of underground mines by inserting long steel bolts into holes bored into the strata forming the roof.

Scrubber: Any of several forms of chemical/physical devices that remove sulfur compounds formed during coal combustion. Technically known as flue gas desulfurization systems, they combine the sulfur in gaseous emissions with another chemical medium to form an inert sludge.

Slope mine: A mine with an opening that slopes upward or downward to the seam. It must also have adjoining vertical shafts for air ventilation and emergency use.

Smelter: A furnace in which raw materials are melted, and metals are separated from impurities.

Stope: An excavation from which ore has been removed in a series of steps.

Strategic minerals: Those minerals considered essential for a country’s economic and defense needs, such as metals for defense weapons, satellite communications, automobile parts and medical instruments.

Subbituminous coal: See “ranks of coal.”

Surface mine: A mine in which the coal lies near the surface and can be extracted by removing the covering layer of overburden.

Tailings: The waste material left over after hardrock mining and milling processes have been completed.

Tipple: A surface processing structure for cleaning and sizing coal and automatically loading it onto rail cars or trucks for movement to market.

Underground mine: Also known as a deep mine. Usually located several hundred feet below the earth’s surface, materials are removed mechanically and transferred by shuttle car or conveyor to the surface.

Unit train: A long train of between 60 and 150 or more hopper cars, carrying only coal between a single mine and destination. A typical unit train can carry at least 10,000 tons of coal in a single shipment.
The National Mining Association (NMA) is U.S. mining's advocate in Washington, D.C. and beyond. NMA is the only national trade organization that represents the interests of mining before Congress, the administration, federal agencies, the judiciary and the media—providing a clear voice for U.S. mining. NMA’s mission is to build support for public policies that will help America fully and responsibly utilize its coal and mineral resources.

NMA has a membership of more than 250 corporations and organizations involved in various aspects of mining. NMA provides a forum for these diverse industry segments to be informed, heard and represented.

101 Constitution Avenue NW, Suite 500E
Washington, D.C. 20001