Outlook and Benefits of An Efficient U.S. Coal Fleet

Final Report January 2019

Outlook of US HELE Plants Objectives of this study

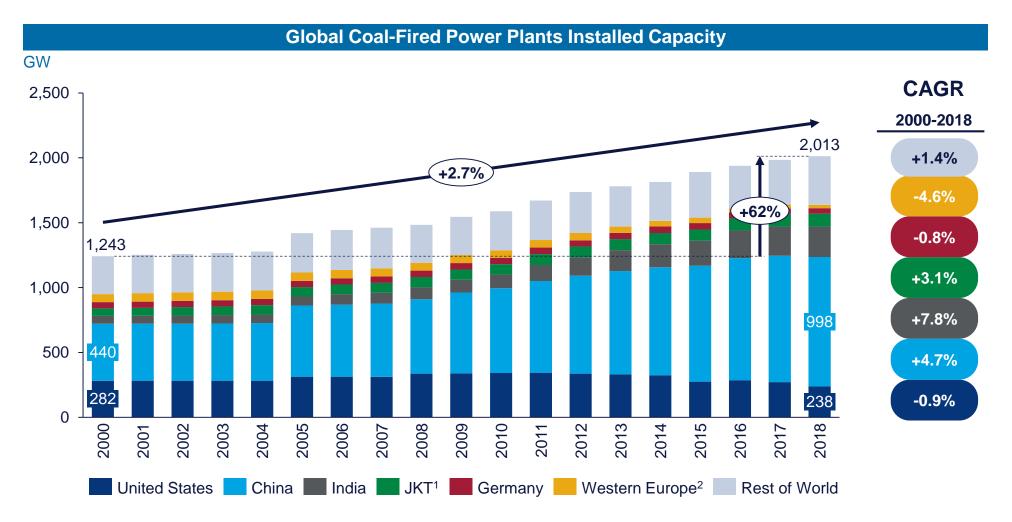
(1) Benchmark the installed capacity of US HELE plants against other jurisdictions

- Benchmarking of the US installed capacity of HELE plants
- Lessons learned from other jurisdictions on what it takes to foster the development of HELE plants
- Realistic scenarios for the pace of development of HELE plants in the US, in light of the experience of countries ahead of the curve

(2) Estimate the positive impact of HELE plants not monetized by private investors

- Estimate other benefits not monetized, not properly captured by private investors
- o Social valuation of HELE plants, encompassing benefits currently not monetized by investors

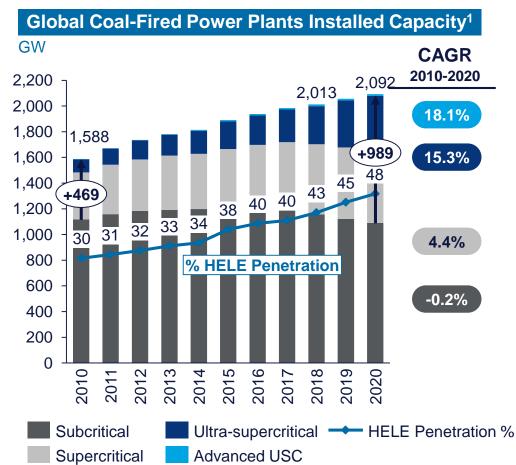
(3) Drive implications for policies and regulations


- Findings to foster the development of HELE plants in the US
- Potential implications for coal policies and regulations

Coal-fired power plants capacity has grown 62% globally since 2000, exceeding 2,000 GW in 2018

Coal still is and will continue to be a predominant fuel in the global energy matrix

Note: 1. JKT refers to Japan, South Korea and Taiwan. 2. Western Europe includes Spain, UK, Netherlands, France, Denmark and Belgium Source: Wood Mackenzie Energy Market Service, Coal Market Service

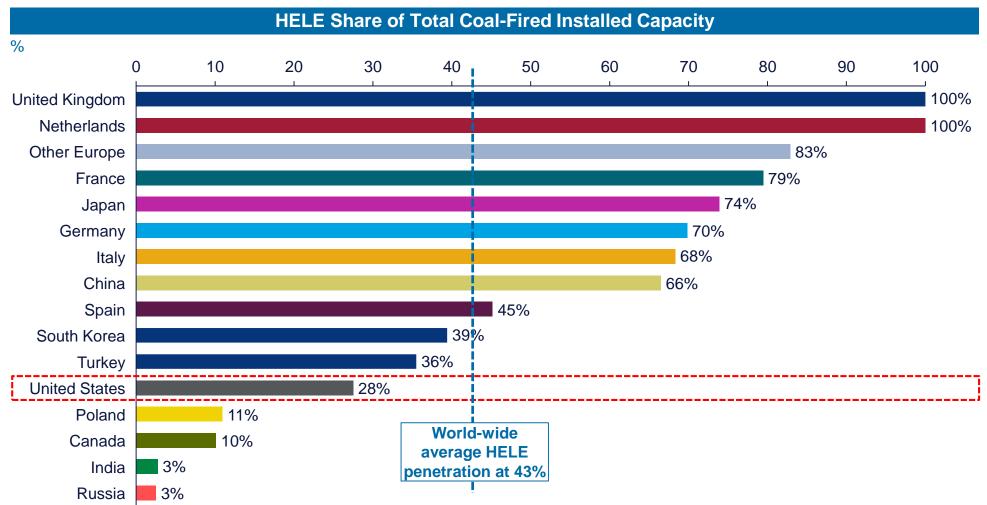


Growth in coal plant capacity has been led by HELE power plants commissioned in the past decade

HELE plant share of total coal-fired power capacity increased from 30% to over 40%, and is expected to continue rising as new HELE plants replace subcritical plants

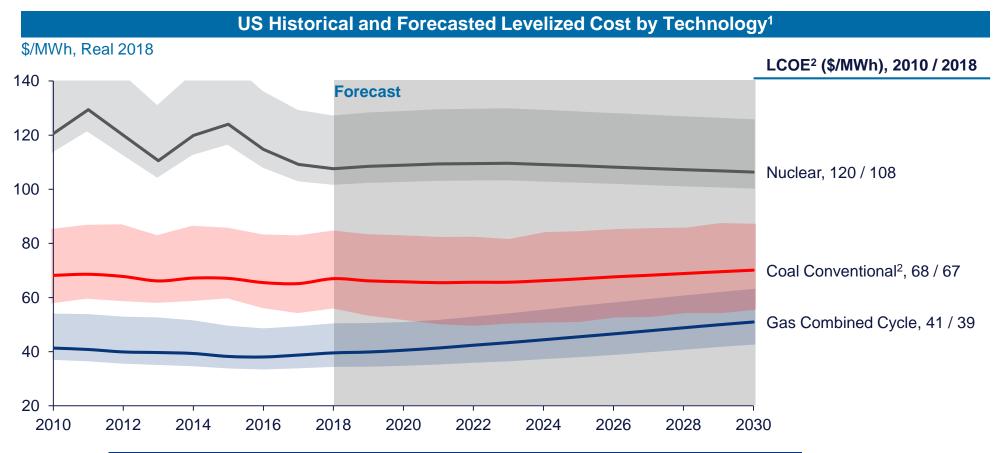
Category	Efficiency Rate	CO ₂ Intensity	Coal Consumption	Steam Temperature
Advanced ultra- supercritical	More than 45%	670-740 g CO ₂ / kWh	290-320 g/kWh	700°C+
Ultra- supercritical	Up to 45%	740-800 g CO ₂ / kWh	320-340 g/kWh	600°C+
Supercritical	Up to 42%	800-880 g CO ₂ / kWh		Approx. 550°C-600°C _E Plants —
Subcritical	Up to 38%	≥880 g CO ₂ / kWh	≥380	<550°C

HELE Power Plant Definition


Note: 1. Coal-fired power plant capacity forecast is based on the under construction and announced power plant projects and planned retirements Source: Wood Mackenzie, World Coal Association, EIA

HELE plants represent 43% of worldwide total coal-fired capacity

Among the major economies, Japan, Germany and China lead the world in coal plant efficiency

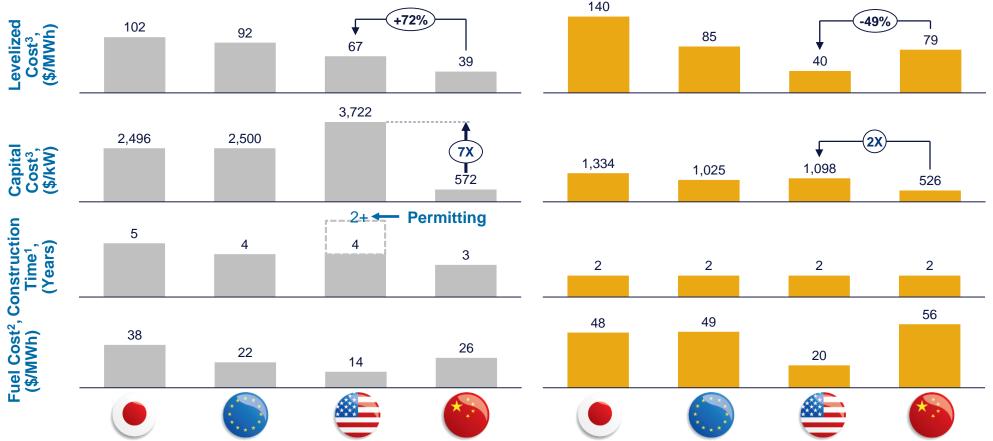


Baseload dispatchable power plant economics

Fuel prices and capital costs hold challenges and offer opportunities

Prior to the 2009 crash in natural gas prices, coal-fueled power plants long offered the lowest LCOE in the US

Note: 1. The lines represent the averages of all US states. The range present the maximum and minimum states 2. The conventional coal plant is assumed as Non-CCS (Carbon Capture and Storage). Source: Wood Mackenzie North America Power and Renewable Service


HELE Coal Plant Economics

Reducing US HELE plant CAPEX is key for their competitiveness

US HELE plants exhibit a 72% higher levelized cost than Chinese plants due to a CAPEX difference of seven times Comparison of combined cycle natural gas CAPEX in US and China shows opportunity for reduction of US HELE CAPEX

Combined-Cycle Gas Plant Economics

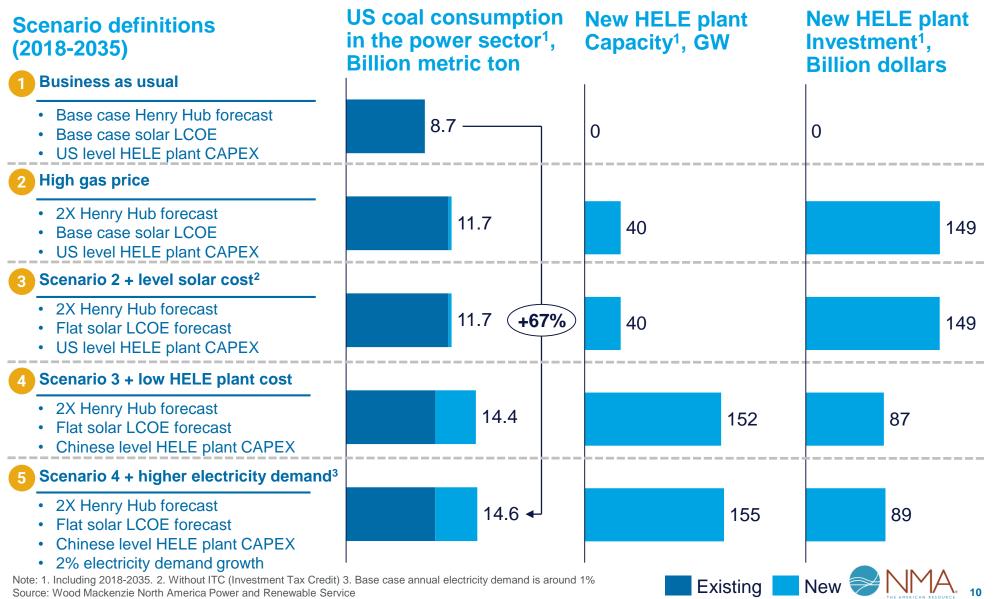
Note: 1. Europe is the modelling assumption. US construction time is the average of several recent HELE power plants, including John Turk Jr Plant, Prairie State Generating Station, Trimble County Generating Station 2, and Longview Power. Japan construction time is the average of several currently under construction power plants, including Takehara power station new unit 1, Noshiro power station unit 3, Matsuura Kyushu power station unit 2, Sumitomo Metals Kashima power station Unit 2, Taketoyo power station Unit 5 and Hitachinaka Kyodo power station Unit 1

2. Assume imported LNG for China. 3. Costs are all in Real 2018 US\$

Source: Wood Mackenzie, World Coal Association, Danish Energy Agency, IEA, NEA

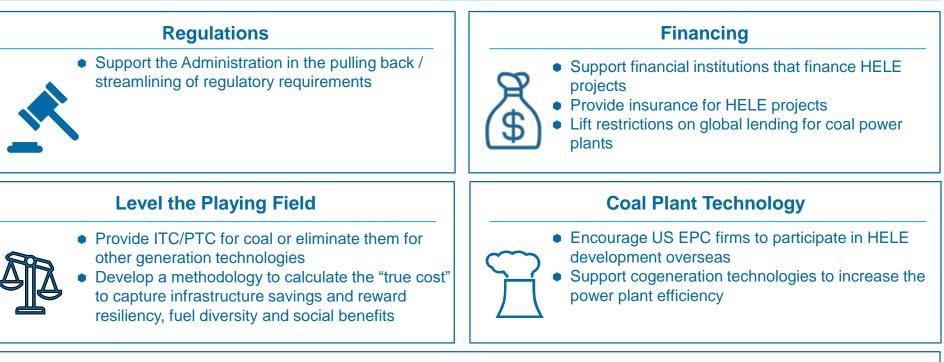
However, HELE plants have other benefits that are not usually monetized using conventional power plant economics

Other Benefits not Currently Monetized by HELE Plants				
Infrastructure	Do not require significant network upgrades Do not require backstop generation or energy storage (e.g. batteries)			
Market	Provide greater reliability, strengthen energy security and improve US competitiveness (key trading partners are using HELE technology and it enhances their competitive position) Provide ancillary services (spinning reserve, voltage regulation, resiliency) Do not require a new market paradigm			
Impacts on Economy	Expand payrolls, tax base and increases revenues for local contractors, suppliers, service providers and ancillary businesses Increase construction jobs Stimulate US manufacturing industry			


HELE power plants help reduce uncertainty in the power markets, a benefit not recognized by the industry and the public

Additionally, some market opportunities for HELE plants are not being properly considered

Higher natural gas prices ¹ - Uncertainty
• Gas supply: a) Reduced supply due to increased fracking regulation, e.g. New York fracking ban and Colorado Proposition 112; b)
limitation on available shale drilling locations and c) worse than expected well performance.
Domestic gas demand: Increased gas demand from the petrochemical industry.
Gas exports: Rising LNG exports due to higher global gas demand and increasing US to Mexico piped exports.
• Infrastructure requirements: Investments required for interstate and intrastate gas pipeline projects in the US. Several large
pipeline projects have drawn opposition by local communities and environmental groups.
Renewables integration into the grid ¹
• Feasibility: Challenges to integrate renewables into the current grid system, which is designed by the dispatch model.
High cost: Renewables integration would require market redesign and additional investments in the grid.
Resilience and reliability: Grid reliability issues as renewables (mostly solar and wind) are intermittent resources.
Dependency on energy storage: Renewables depend on utility-scale battery technologies to mature.
HELE plant construction Opportunity
 Lower capital cost: Leading HELE technology in the US, streamlined EPC process and domestically manufactured plant equipment.
• Faster development time: More time-efficient plant construction, shortened HELE power plant permitting process and regulation
requirement.
Higher electricity demand Opportunity
• Stronger economy and faster population growth: Higher GDP growth rate (seen in recent years) could drive up electricity
demand across all sectors.
• Electric vehicle and household electrification: Residential and transportation power demand could increase as a result.
 Digitization, automation and big data: Increase in industrial power demand.
Note: 1. See appendix for details Source: Wood Mackenzie


woodmac.com

Under scenario 5, installed HELE plants capacity could increase by 155 GW and coal consumption for power by 67%

Suggested ideas to foster HELE power plant deployment in the US

We envision the HELE development in the US to require policy support from a regulatory, economic and technological standpoint in addition to potential market opportunities

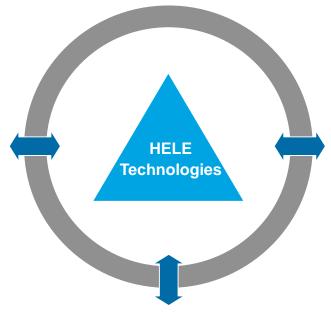
Opportunities

- Natural gas prices begin to rise due to regulation and limitations on fracking and higher gas demand
- Limitations to the integration of renewables
- Form global alliances with countries planning to continue to use coal and promote the use of efficient coal technologies
- Higher electricity demand in the US

Agenda

Appendix

HELE Plant Definitions Benchmarking of US HELE Plants HELE Plant Case Studies Scenario Analysis



What are the advanced coal technologies?

The technologies applied to achieve higher efficiency and low emission from coal-fired power plants include

Supercritical & Ultra-supercritical

- » Based on a pulverised coal combustion system
- These technologies operate at pressures and temperatures where liquid water and gaseous water are stable while coexisting. At this point there is no difference between both states
- » The process results in lower heat rates, hence higher efficiency

Integrated Gasification Combined Cycle (IGCC)

- » It combines cycle technology that employs gas and steam turbines. This integrated gasification results in high temperatures with an efficiency of up to 55%
- » This technology uses a gasifier to convert coal (or other carbon-based materials) to syngas which powers the combined cycle turbine

Fluidised Bed Combustion

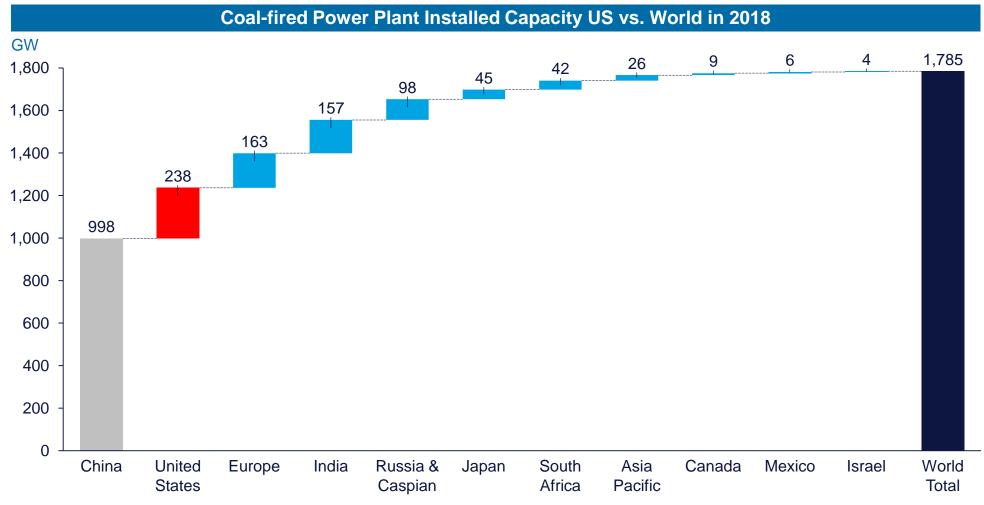
- » This technology allows a greater flexibility in the use of fuels like coal, waste and biomass
- » The process consists of a mixture of solid particles suspended in an ascending gas flow, that together have fluid properties
- » The combustion takes place in the bed with high calorific transfer to the unit, but low combustion temperatures

What are the parameters for different HELE plant categories?

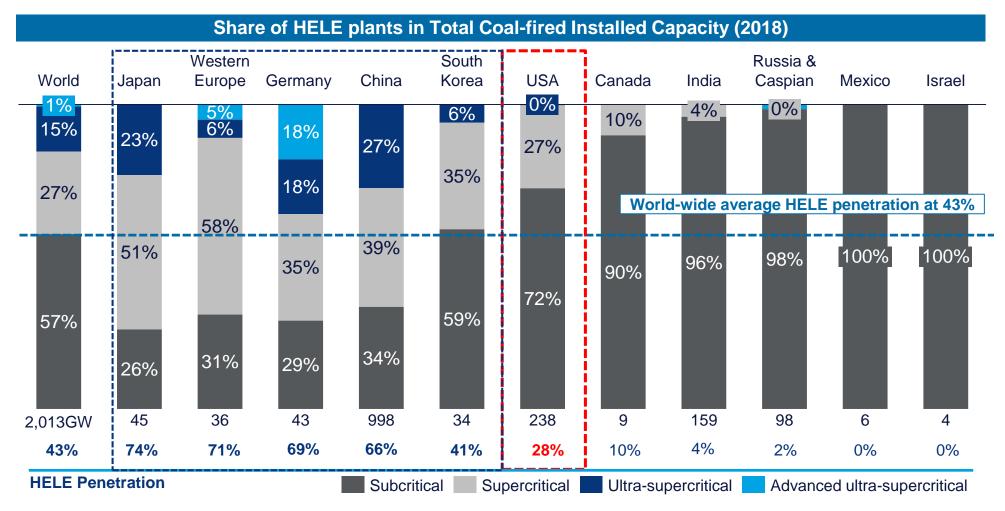
Global H	HELE Power	r Plant Defini	tion – Exclu	ding US	US HELE	Power Plant	Definition	(EIA)
Category	Efficiency Rate	CO ₂ Intensity	Coal Consumption	Steam Temperature	Due to the difference EIA supercritical an	d ultra-super	critical def	finitions ¹ for US
Advanced ultra- supercritical	More than 45%	670-740 g CO ₂ / kWh	290-320 g/kWh	700°C+	coal power plants an to Advanced ultra-supe (None)	conduct this	analysis	I Mackenzie dat
Ultra- supercritical	Up to 45%	740-800 g CO ₂ / kWh	320-340 g/kWh	600°C+	Ultra-supercritical Po John W Turk Jr 1 Supercritical Power F	Arkansas	614 MW bles)	Start-up in 2012
percritical	Up to 42%	800-880 g CO ₂ / kWh	340-380 g/kWh	Approx. 550°C-600°C	Longview Power LLC 1 Trimble County 2 Iatan 2 Sandy Creek Energy Prairie State Station 1	West Virginia Kentucky Missouri Texas Illinois	700 MW 747 MW 850 MW 927 MW 800 MW	Start-up in 2011 Start-up in 2011 Start-up in 2010 Start-up in 2013 Start-up in 2012
Subcritical	Up to 38%	≥880 g CO ₂ / kWh	≥380 g/kWh	<550°C	Trenton Channel 9	Florida Florida Florida South Carolina Michigan South Carolina	es) 494 MW 660 MW 420 MW 518 MW 551 MW	Start-up in 1969 Start-up in 1985 Start-up in 1996 Start-up in 1968 Start-up in 2007

Agenda

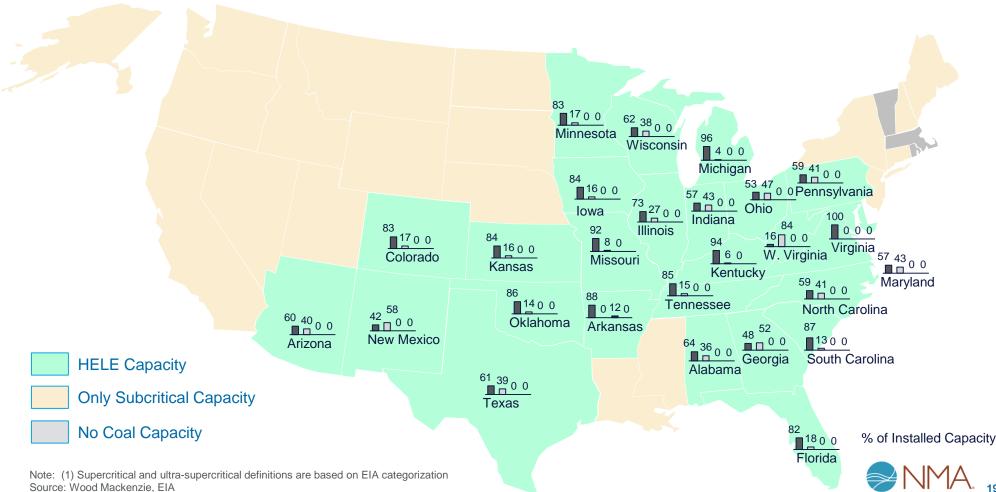
Appendix


HELE Plant Definitions Benchmarking of US HELE Plants HELE Plant Case Studies Scenario Analysis

Global: Coal-fired power installed capacity


China currently has the highest coal-fired installed power capacity in the world followed by the US and Europe

Today, HELE plants represent 43% of global coal-fired power plants capacity, including 16% ultra-supercritical or further advanced



US: Coal-fired power plant share by technology by state

Subcritical coal-fired power plants represent 72% of the total coal capacity; most states face a significant gap to achieving an efficient coal-fired power plant fleet

Coal-fired Power Plant Technology Share by State (2018)

woodmac.com

US: Top operating coal-fired power plants by efficiency

John W. Turk, Jr coal power plant is the only ultra-supercritical plant in the US, but the Longview Power plant is the most efficient plant

Power Plant and Unit	Status	State	EIA HELE Category	Capacity MW	WM Estimated Heat Rate Btu/kWh	WM Estimated Efficiency %	Start Year	Expected Retirement Year
John W. Turk, Jr 1	Operating	Arkansas	Ultra-supercritical	614	9,000	38%	2012	2069
Longview Power LLC 1	Operating	West Virginia	Supercritical	700	8,600	40%	2011	2068
Trimble County 2	Operating	Kentucky	Supercritical	747	8,615	40%	2011	2068
latan 2	Operating	Missouri	Supercritical	850	8,845	39%	2010	2067
Sandy Creek Energy Station S01	Operating	Texas	Supercritical	927	8,850	39%	2013	2070
Prairie State Generating Stati PC1	Operating	Illinois	Supercritical	800	9,000	38%	2012	2069
Cliffside 6	Operating	North Carolina	Supercritical	800	9,000	38%	2012	2069
Prairie State Generating Stati PC2	Operating	Illinois	Supercritical	800	9,000	38%	2012	2069
Elm Road Generating Station 2	Operating	Wisconsin	Supercritical	634	9,027	38%	2011	2068
J K Spruce 2	Operating	Texas	Supercritical	780	9,060	38%	2010	2067
Marshall (NC-Catawba) 4	Operating	North Carolina	Supercritical	670	9,073	38%	1970	2027
Weston (WI) 4	Operating	Wisconsin	Supercritical	535	9,094	38%	2008	2065
Bull Run (TN) 1	Operating	Tennessee	Supercritical	888	9,095	38%	1967	2027
Morgantown Generating Plant ST2	Operating	Maryland	Supercritical	620	9,107	37%	1971	2028
Oak Grove (TX) OG1	Operating	Texas	Supercritical	817	9,130	37%	2009	2066
Oak Grove (TX) OG2	Operating	Texas	Supercritical	827	9,130	37%	2010	2067
Belews Creek 2	Operating	North Carolina	Supercritical	1,147	9,149	37%	1975	2032
Walter Scott Jr Energy Center 4	Operating	Iowa	Supercritical	816	9,229	37%	2007	2064
Rockport (IN) 1	Operating	Indiana	Supercritical	1,319	9,243	37%	1984	2026
Belews Creek 1	Operating	North Carolina	Supercritical	1,147	9,255	37%	1974	2031

Top US HELE Coal-fired Power Plants by Efficiency

HELE Coal-fired power plants

built in the last decade

Agenda

Appendix

HELE Plant Definitions Benchmarking of US HELE Plants HELE Plant Case Studies Scenario Analysis

John W. Turk, Jr power plant is the only Ultra-supercritical plant in the US

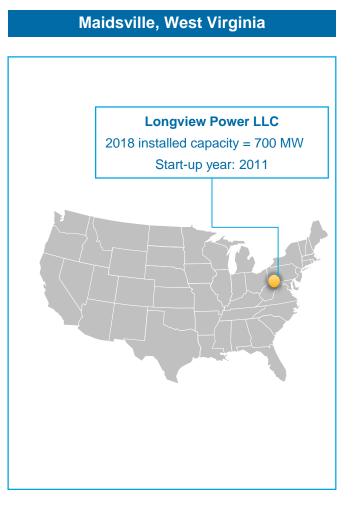
	United States:	John W. Turk, Jr	
ne		Subbituminous Coal	

Prime Mover	Steam Turbine
Status	Operating
Efficiency Type	Ultra-supercritical
WM Estimated Heat Rate	9,000 Btu/kWh
Efficiency Rate	37.9%

Plant overview

Fuel T

- American Electric Power operates the plant through its subsidiary Southwestern Electric Power Co. (SWEPCO) with an ownership of 73%. Other holders include Arkansas Electric Cooperative Corp 12%; East Texas Electric Cooperative 8% and Oklahoma Municipal Power Authority 7%. Commissioning of the plant culminated almost seven years of legal, regulatory, and construction work to bring the \$1.8 billion project to completion.
- The plant started operations in December 2012 and is awarded for being one of the cleanest and most efficient coal-fired power plants in the United States. Such recognition is the result of applied air quality control systems that include a selective catalytic reduction (SCR) system and low nitrogen oxide (NOx) burners with close-coupled over-fire air for control of NOx; a dry flue gas desulfurization (FGD) system and pulsejet fabric filter (baghouse) for sulfur dioxide and particulate control; and activated carbon injection to reduce mercury emissions.
- The plant burns low-sulphur subbituminous coal in a spiral-wound universal pressure-type boiler, producing steam at 26.2 MPa (3789 psi) and 600° C.


Longview Power plant is regarded as one of the cleanest coal-fired power plants in the United States

United States. Longview Power LLC				
Fuel Type	Bituminous Coal			
Prime Mover	Steam Turbine			
Status	Operating			
Efficiency Type	Supercritical			
WM Estimated Heat Rate	8,600 Btu/kWh			
Efficiency Rate	39.7%			

United States: Longview Power LLC

- The construction of the plant began in January 2007, after approval of final permits for the project. In 2011, operations started and Longview became the first new power plant to initiate operation in West Virginia in 18 years.
- The plant cost approximately \$2.2Bn, and its ownership is divided as follows: Bain Capital 35%, Kohlberg Kravis Roberts & Co (KKR) 30%, Centerbridge Partners 11%, American Securities 11%, Longview Power 10% and Affiliated Managers Group 3%.
- The plant uses best-in-class air pollution control systems that effectively maintain emissions well below its environmental permit limits, which are among the most stringent in the nation for coal plants. Furthermore, Longview's CO₂ output is 15%. It also was certified by the West Virginia Public Service Commission to have the lowest CO₂ emissions of any coal-fired plant in West Virginia.

Sichuan Baima Unit 2 (CFB) started operation in 2000 and was the first 600MW supercritical plant with the largest capacity of its class

China Energy Investment Corporation 国家能源投资集团

China. Sichuan Daima Ohn Z				
Start Year	2000			
Status	Operating			
Main Fuel Type	Hard Coal			
Main Steam Temperature	571° C			
Efficiency Type	Supercritical			
Efficiency Rate	-			

China: Sichuan Baima Unit 2

- The Baima 600M WCFB (Unit 2) demonstration power station boiler was independently developed and designed by Dongfang Boiler Group Co., Ltd. It is the world's first 600MW supercritical circulating fluidized bed boiler with the largest capacity of its class.
- It combines the advantages of CFB combustion technology and supercritical steam cycle. The design coal for the 600 MW SCCFB unit is a high-ash-content, high-sulfur and low-grade lean coal. The ash content is 43.82%, the sulphur content is 3.3% and the LHVaris 15173 kJ/kg. The desulfurization efficiency reached 97.12%, and the NOx emission concentration was 111.94 mg/Nm³.

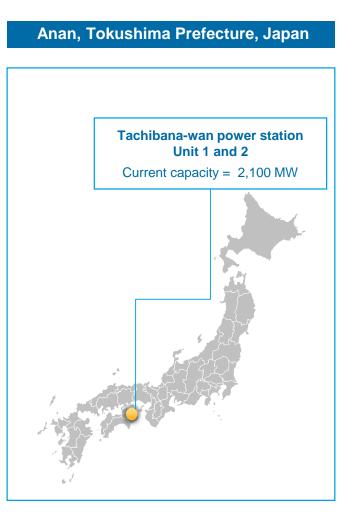
1,320MW Anhui Pingshan Phase II was commissioned in 2017 with the goal of achieving "energy savings and emissions reduction"

中能股份有限公司 SHENERGY COMPANY LIMITED

China: Anhui Pingshan Phase II

Start Year	2019
Status	Under construction
Main Fuel Type	Hard Coal
Main Steam Temperature	600° C
Efficiency Type	Ultra-supercritical
Efficiency Rate	48.9%

- Anhui Pingshan Phase II is a 1,350 MW expansion¹ approved in 2017 as a national demonstration project which will count with a conventional and elevated turbine layout. This unit is expected to become the most efficient and cleanest coal-fired power unit in the world.
- Its design will allow a power supply with a CO₂ gross emission of 251 g/kWh, which is about 15 grams lower than the current domestic most advanced secondary reheat design that reaches a CO₂ emission of 266.18 g/kWh. The total projected investment is approximately USD 780 million.
- This large scale power plant development was commissioned under the national energy policy "energy savings & emissions reduction", which is considered one of the world's leading coal-fired HELE technologies policy for production of clean energy.

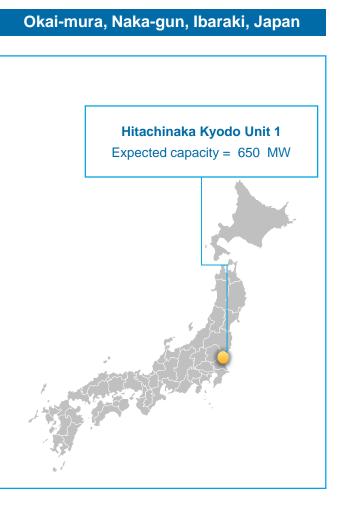

2,100 MW Tachibana-Wan power plant has 2 ultra-supercritical units, with the largest single-unit output in Japan of 1,050 MW

POWER

J	lapan:	Tachi	bana-wa	an Powe	er Station	Unit 1	and 2

Start Year	2000
End Year	Operating
Main Fuel Type	Bituminous Coal
Processing Type	610° C
Efficiency Type	Ultra-supercritical
Efficiency	45.0%

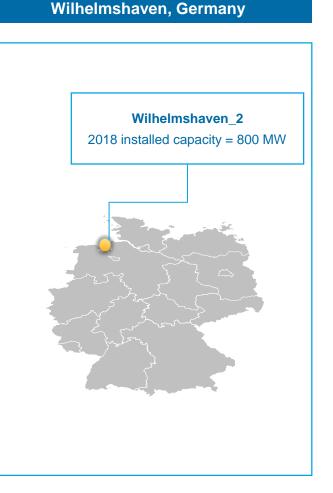
- It is a coal-fired power station that comprises two 1,050 MW units that have been in operation since 2000.
- The power station's technology supports a temperature of 600° C for main steam, 610° C for reheat steam and a pressure of up to 25.0 Mpa.
- The single-unit output of 1,050 MW is the largest in the country and the electricity generated is sent not only to Shikoku but also to the Kansai, China and Kyushu districts.
- The applied technologies include large-capacity MPS-300 pulverisers, largecapacity low-NOx Hitachi NR2-burners, spirally wound water-wall of multi-ribbed tubes, high-strength austenitic steel tubes, high-strength ferritic steel piping, multistage super-heater spray systems, large capacity steam-water separators.



Hitachinaka Kyodo plant was one of several new proposed HELE plants due to nuclear retirements after the Fukushima earthquake

Japan: Hitachinaka Kyodo Power Station Unit 1					
Start Year	2020-2021				
Status	Under construction				
Main Fuel Type	Hard Coal				
Main Steam Temperature	600° C				
Efficiency Type	Ultra-supercritical				
Efficiency Rate	43.0 %				

- It is a proposed USC 650 MW coal-fired power plant with a projected commissioning date of 2020-2021 and is currently under construction at TEPCO's 2,000 MW Hitachinaka Thermal Power Station.
- The project will be operated by Hitachinaka Generation Co., Inc. which its ownership is divided between Chubu Electric Power (96.55%) and Tokyo Electric Power Co. TEPCO (3.45%).
- Japan's Ministry of Economy, Trade and Industry (METI) and Ministry of Environment (MoE) published in April 2013 the "Best Available Technology (BAT)". This guideline is based on best practice for thermal power plants to control GHG emission and no new installation or plan can be approved unless power producers meet these standards.
- The project assessment speeding process and posterior endorsement of the unit by Japan's environment minister Tamayo Marukawa in 2016, came as result of the USC technology that the station will apply, which meet BAT requirements.


Wilhelmshaven power plant is one of the most modern coal-fired plants in Germany

Connarty. Winterine	
Start Year	2014
End Year	2037
Fuel Type	Hard Coal
Processing Type	PCC
Efficiency Type	Advanced ultra-supercritical
Efficiency	46%

Germany: Wilhelmshaven Power Plant

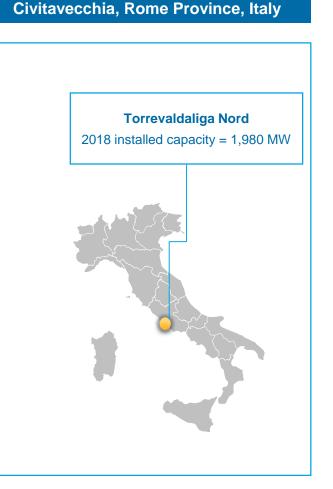
- BKW has a 33% holding in a coal-fired power plant currently operated by Engie (previously known as GDF Suez) in north Germany. This plant has a gross installed capacity of 800 MW. With a projected thermal efficiency of over 46% Wilhelmshaven power plant is one of the most technologically advanced facilities in Europe. It produces electricity with significantly lower CO₂ emissions than existing coal-fired power plants that achieve an efficiency of almost 40%.
- The plant can be used very flexibly and is located right on the north German coast, a fact which has two distinct advantages: first, the plant can easily be supplied by sea with coal from all over the world; second, it can be cooled by sea water, thus helping to protect local freshwater resources. Operating figures and data for the plant are as much as 50% below Germany's strict environmental limits.

Tiefstack HKW power plant is a cogeneration power plant that achieves advanced ultra-supercritical efficiency

Start Year	2009					
End Year	2038					
Main Fuel Type	Hard Coal					
Processing Type	СНР					
Efficiency Type	Advanced ultra-supercritical					
Efficiency	55%					
Main Fuel Type Processing Type Efficiency Type	Hard Coal CHP Advanced ultra-supercritical					

Germany: Tiefstack HKW Power Plant

- The Tiefstack cogeneration plant covers almost half of Hamburg's total district heating needs. The power plant is located on a historical site at the point where Hamburgische Electricitäts-Werke AG opened its first major power plant in 1917. The current power plant was put into operation in 1993. In 2009 Tiefstack's electricity and heat capacity was expanded by a natural gas-fired combined cycle power plant.
- Cogeneration: The baseload unit uses hard coal as fuel, whereas two heating boilers for peak-load demand use natural gas and oil.
- The power plant is equipped for both base load and peak load production. The power plants are equipped with state-of-the-art flue gas cleaning systems. These ensure that the flue gases emitted from the 120-meter-high chimney fall well below the permissible limit values.



Torrevaldaliga Nord power plant replaced its oil-fired power units for coal-fired in 2008

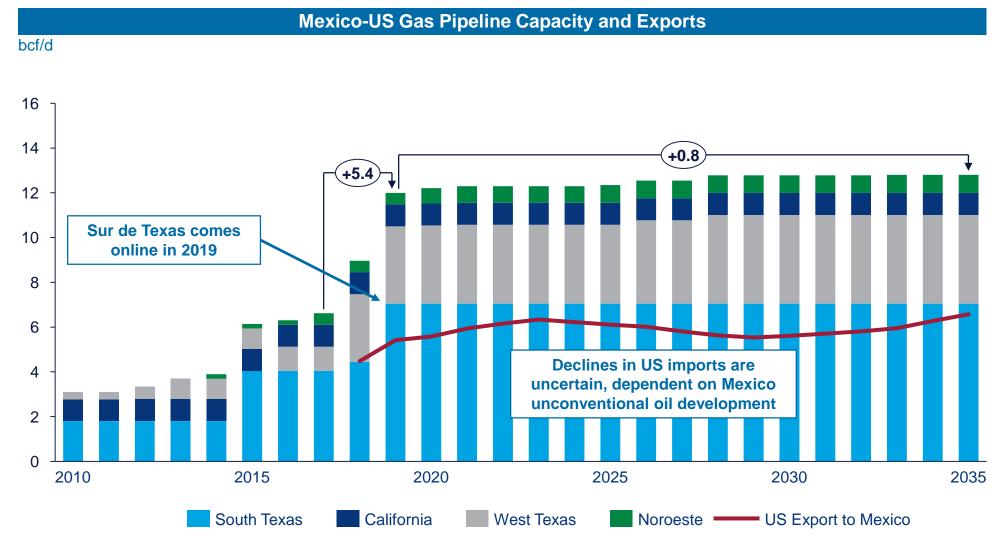
Italy: Torrevaldaliga Nord Power PlantStart Year2008End Year2037Main Fuel TypeHard CoalProcessing TypePCCEfficiency TypeAdvanced ultra-supercritical			
Start Year	2008		
End Year	2037		
Main Fuel Type	Hard Coal		
Processing Type	PCC		
Efficiency Type	Advanced ultra-supercritical		
Efficiency	57%		

- The plant is owned by Enel Produzione SpA, and first consisted of four oil-fired 660 MW units. The units were replaced with three 660 MW coal-fired units, for a total installed capacity of 1,980 MW.
- The replacement project (from fuel-oil plants) encountered stiff opposition in 2006 arguing that the company lacked full authorization for the coal loading jetty. In May of the same year the issues were solved and the project was clear to go. The 3 units were completed in 2008.
- On May 21st, 2018 Torrevaldaliga Nord became the first power plant in the world to use Convexum and Percepto systems. These systems are aimed at providing an environmental and security monitoring service, able to perform autonomous flights, assisted by video analysis algorithms and three-dimensional routes definitions via software.

Agenda

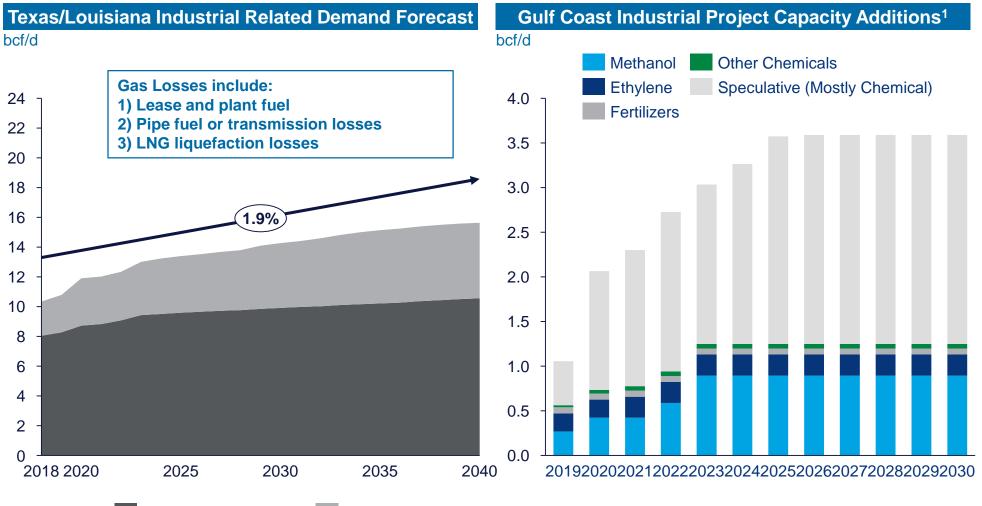
Appendix

HELE Plant Definitions Benchmarking of US HELE Plants HELE Plant Case Studies Scenario Analysis


Sanctioned LNG projects in the Gulf Coast would reach ~8.5 bcfd by 2022, and could further increase to almost 13 bcfd by 2025

U.S. Gulf Coast LNG Capacity by Terminal				Gulf Coast LNG Projects Status							
					An extensive backlog of possible LNG projects are currently in the FERC queue and going through environmental impact review, and could add additional LNG demand						
					LNG Project	Developer	Draft Env. Impact Statement	Final Env. Impact Statement	Federal Auth. Deadline	Final Order	
					Calcasieu Pass	Venture Global		26-Oct-18	24-Jan-19	22-Jan-19	
					Freeport Train 4 ¹	Freeport	n/a	2-Nov-18	31-Jan-19		
					Driftwood	Tellurian	Sep 2018	18-Jan-19	18-Apr-19		
					Port Arthur	Sempra	Sep 2018	31-Jan-19	1-May-19		
					Corpus Christi Ph.3 ¹	Cheniere	n/a	8-Feb-19	9-May-19		
					Texas LNG	Texas LNG	Oct 2018	15-Mar-19	13-Jun-19		
5 2020 2025	2025		2030	2035	Gulf LNG	Kinder Morgan	Nov 2018	17-Apr-19	16-Jul-19	16-Jul-19	
Sabine Pass Sabine F					Annova	Exelon	Dec 2018	19-Apr-19	18-Jun-19		
		asieu Pass Ien Pass (Pi	,		Rio Grande	NextDeca de	Oct 2018	26-Apr-19	25-Jul-19		
Freeport Sabine	Sabine	Pass Tra	in 6 (Probable)		Plaquemines	Venture Global	Nov 2018	3-May-19	1-Aug-19		
LNG Gas Exports	rts									IMΛ	

Note: Freeport Train 4 and Corpus Christi Phase 3 require an Environmental Assessment (EA) rather than Environmental Impact Statement (EIS) Source: Wood Mackenzie North America Gas Tool

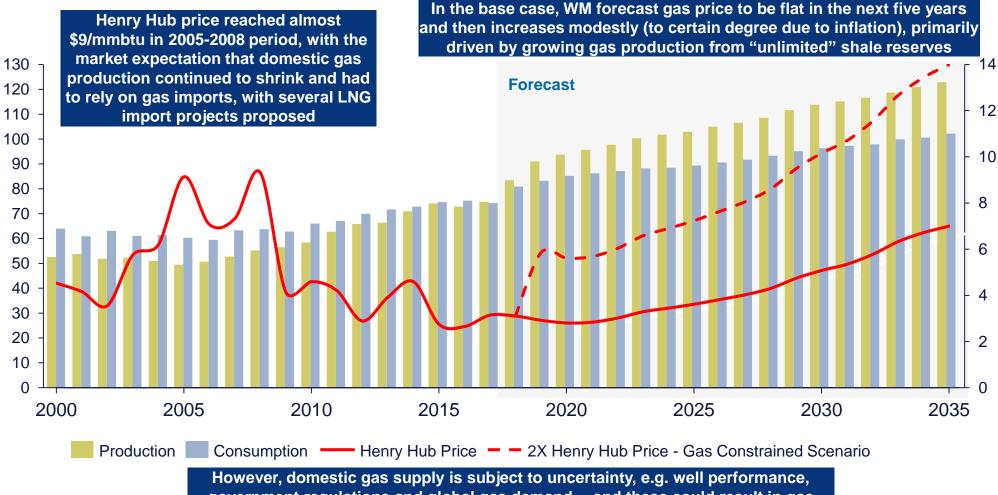


New projects are set to anticipate the expanding U.S. gas volumes, adding ~3 bcfd of cross-border pipeline capacity in 2019

The fuel consumption from a massive buildout of industrial plants, pipelines and LNGs drives the US Gulf Coast gas demand

Industrial Consumption Gas Losses

THE AMERICAN RESOURCE 34

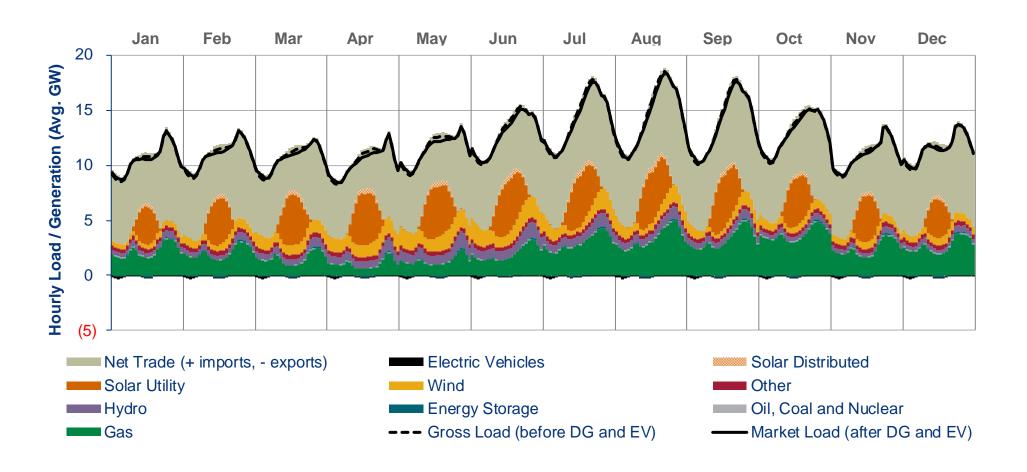

bcf/d

woodmac.com

In the alternative scenario, Henry Hub price forecast is doubled as a result of potential gas supply restrictions and demand upside

US Natural Gas Production and Consumption vs Henry Hub Price – Historical and Forecasts

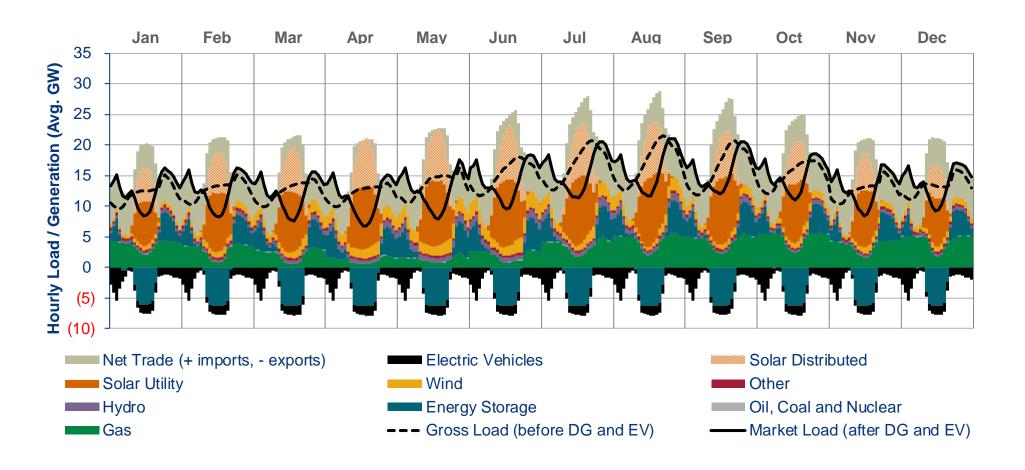
\$/mmbtu, nominal

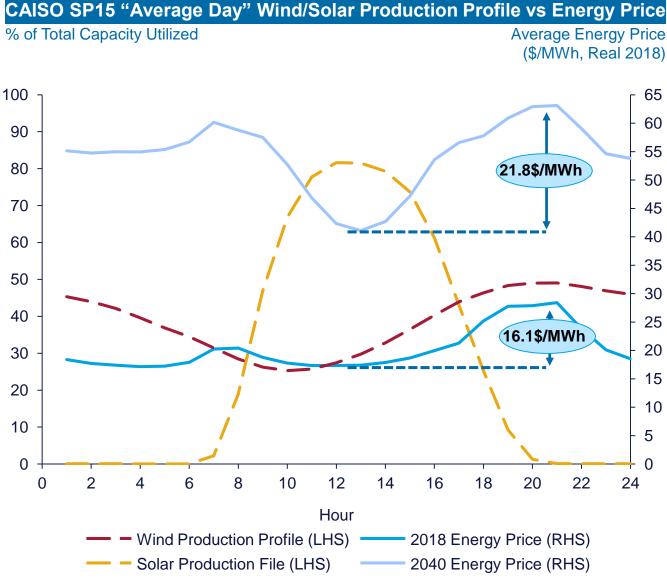


government regulations and global gas demand... and these could result in gas shortfall and increase of henry hub price back to the 2005-2008 level

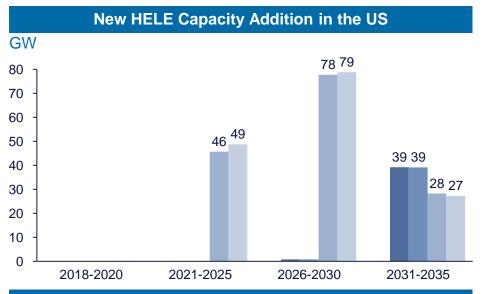
In California, the aggressive adoption of renewables has already turned the load profile to one with drastic "duck curve"

CAISO SP15 Monthly "Average Day" Hourly Energy Balance – 2018

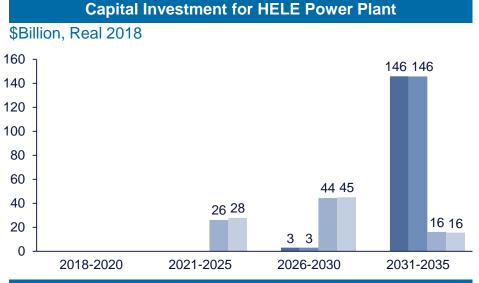



Renewables expansion puts pressure on the grid; the transformation depends on successful integration and energy storage technology

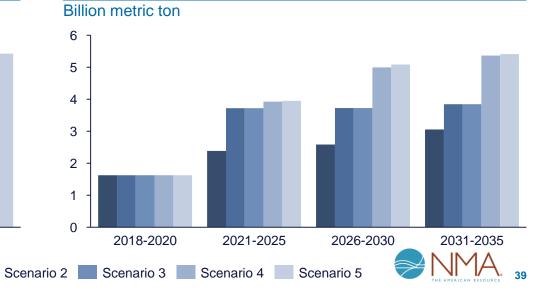
CAISO SP15 Monthly "Average Day" Hourly Energy Balance – 2040


This not only poses questions on grid reliability, but also creates significant fluctuation of energy price throughout the day

- Wind production is assumed to be 30%~50% of the facility's name plate capacity
- Wind peak production is reached when the energy price is the highest, at 8-9pm
- Significant addition of utility scale solar capacity is expected to further diverge the low and peak energy pricing



In the alternative scenarios, competitive coal power plant economics stimulate new HELE capacity and higher coal consumption in the US



PWh

Scenario 1

Coal Consumption in the US Power Sector

Disclaimer

Strictly Private & Confidential

These materials, including any updates to them, are published by and remain subject to the copyright of the Wood Mackenzie group ("Wood Mackenzie"), and are made available to clients of Wood Mackenzie under terms agreed between Wood Mackenzie and those clients. The use of these materials is governed by the terms and conditions of the agreement under which they were provided. The content and conclusions contained are confidential and may not be disclosed to any other person without Wood Mackenzie's prior written permission. Wood Mackenzie makes no warranty or representation about the accuracy or completeness of the information and data contained in these materials, which are provided 'as is'. The opinions expressed in these materials are those of Wood Mackenzie, and nothing contained in them constitutes an offer to buy or to sell securities, or investment advice. Wood Mackenzie's products do not provide a comprehensive analysis of the financial position or prospects of any company or entity and nothing in any such product should be taken as comment regarding the value of the securities of any entity. If, notwithstanding the foregoing, you or any other person relies upon these materials in any way, Wood Mackenzie does not accept, and hereby disclaims to the extent permitted by law, all liability for any loss and damage suffered arising in connection with such reliance.

Copyright © 2018, Wood Mackenzie Limited. All rights reserved. Wood Mackenzie is a Verisk business.

on the world's natural resources. We are a leading research and consultancy business for the global energy, power and renewables, subsurface, chemicals, and metals and mining industries. For more information visit: woodmac.com

WOOD MACKENZIE is a trademark of Wood Mackenzie Limited and is the subject of trademark registrations and/or applications in the European Community, the USA and other countries around the world.