Health Physics Issues Related to Radon – Preliminary Comments

Panel Discussion NMA-NRC Denver, 9 June 2015 Presented By: Douglas Chambers

Radon -222 [Radon]

- Radon is natural and <u>everywhere</u>
- Radon released from Ra-226 in soils is the single largest source of Rn-222
- Radon is a radioactive noble gas decaying to solid atoms
- Radon is produced through radioactive decay of Ra-226 with a half-life of 3.82 days
- Levels of radon are <u>highly variable</u>


Outdoor Radon

- Radon levels in outdoor air are affected by the regional geology, meteorology, local topography...
- The NAS (1999)report many areas with outdoor radon levels ranging from 0.12 to 0.3 pCi/L
- Also according to NAS (1999), the highest concentrations in continental US are found in the <u>Colorado Plateau where measurements ranged</u> from 0.5 to 0.75 pCi/L of air (18.5–30 Bq/m³)

Radon levels change diurnally and by season

SOURCE: After Pearson, U.S. Department of Health & Welfare, 1967

Indoor radon levels are variable

Location	Average (Bq/m ³)	90 th Pctle (Bq/m ³)
Arizona	38	47
Colorado	107	136
New Mexico	85	122
Utah	103	113
USA	46.3 (+/- 4.4)	> 200 Bq/m3

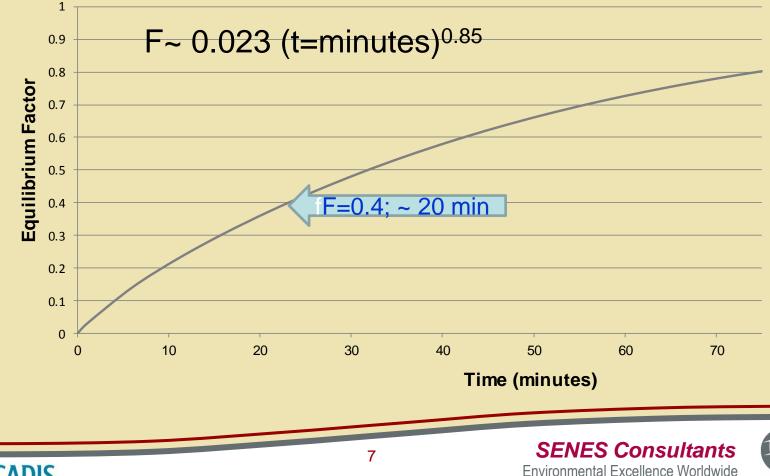
Note: 0.1 pCi/L = 3.7 Bq/m^3

Radon and WL

♦ WL = F x [C(radon)/100] (old units)
♦ C(radon) = [100 x F] / WL

"F" is important

- Indoors F depends on mean residence time (air change rate)
- Out of doors F depends on travel time from source of "fresh" radon to receptor of interest


"Nominal F"

- Indoors F~ 0.4 is a common assumption
- Out-of –doors F~ 0.6 is a common assumption

Dose is from the ingrowth of Radon Progeny

Observations

Radon is everywhere

0

- Radon concentrations are highly variable
- Equilibrium factor (F) is important
- Very difficult to measure small increments of the order of 0.1-0.2 pCi/L to background radon
- Long-term radon measurements are preferred for assessing source or environment but many challenges

